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SUMMARY

The effects of system parameters on the interface condensation rate in a
laminar jet-induced mlxing tank are numerically studied. The physical system
conslsts of a partially-filled cylindrical tank with a slightly-subcooled jet
discharged from the center of the tank bottom toward the liquld-vapor interface
which is at a saturation temperature corresponding to the constant tank pres-
sure. Liquid is also withdrawn from the outer part of the tank bottom to maln-
taln the constant liquld level. The jet veloclty is selected to be low enough
such that the free surface is approximately flat. The effect of vapor super-
heat is assumed to be negllgible. Therefore, the Interface condensation rate
can be determined from the resultlng temperature field in the Iiquld reglon
alone. The nondlmenslonal form of the steady-state conservation equations are
solved by a finite-difference method for various system parameters Including
liquld height to tank diameter ratio, tank to jet diameter ratio, llquid inflow
to outflow area ratio, and a heat leak parameter whlch characterizes the unl-
form wall heat-flux. Detalled analyses based on the numerical solutions are
performed and simplified equations are suggested for the predictlon of Inter-
face condensatlon rate.
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NOMENCLATURE

surface area of central jet, outflow, or interface

tank to jet diameter ratio, D/d

specific heat at constant pressure

tank diameter

Jet diameter

gravitational acceleration

*Member, AIAA.
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liquid height from the tank bottom

condensation heat-transfer coefficient

latent heat of condensation

Jakob number, Cp(T s - Tj)/hfg

thermal conductivity

condensation mass flux

wall heat-flux parameter, Nh - qwD/k(Ts - Tj)

pressure

equilibrium hydrostatic pressure

2

dlmensionless pressure, (p - pg)/puj

Jet volume flow rate

tank wall heat flux

radial coordinate measured from the centerline

dimensionless radial coordinate, r/D

jet Reynolds number, pujd/N

condensation Stanton number, hc/pUjC p

temperature

dimensionless temperature, (T - Tj)/(T s - Tj)

axial velocity

condensation-lnduced velocity (positive value)

dimensionless axial velocity, u/uj

dimensionless condensatlon-lnduced velocity, Uc/Uj

radial veloclty

dimensionless Fadial velocity, v/uj

dimenslonless radial velocity at interface

axial coordinate measured from the tank bottom

dimensionless axial coordinate, x/D
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Subscripts:

J

out

potential core length

dynamic viscosity

liquid density

average value over the interface

evaluated at jet inlet

evaluated at outflow location

evaluated at llquid-vapor interface

evaluated at condensation condition

evaluated at vapor condition

INTRODUCTION

The pressure control of cryogenic storage tanks in space is one of the

major technologies being developed in the NASA cryogenic fluids management

program. The heat transferred through insulated tank walls can result in

thermal stratiflcatlon of the cryogenic propellant which increases the tank

self-pressurlzation rate. A preferred method of controlling the pressure of

a cryogenic storage system is the use of axial Jet-induced mixing (refs. l
and 2). A slightly subcooled jet can provide mixing of tank liquid and trans-

fers heat from the interface into the bulk liquid. Vapor condensation is

induced and the pressure of the tank is then reduced. Therefore, the interface

condensation plays the key role in controlling the pressure of a jet-induced

mixlng tank.

Several stud|es of steady-state fluid mixing and condensation rate have
been conducted. Thomas (ref. 3) measured the condensation rate of steam on

water surfaces mixed by a submerged turbulent jet and found that the conden-

sation rate was roughly proportional to the jet Reynolds number. Dominick
(ref. 4) investigated the effects of jet injection angle and jet flow rate on
the condensation rate in a Freon If3 tank. The interface heat transfer was

observed to increase as jet injection angle became more normal to the inter-
face. However, the average heat transfer coefficient at the interface was

found to be increasing with jet Reynolds number only to a power of 0.?3. Sonln

et al. (ref. 5) measured the steady-state condensation rate of steam in a water

tank with condensation process dominated by the liquid-side turbulence near
the Interface. A correlatlon between the condensation rate and characteristic

interface turbulent velocity was developed. Hasan and Lin (ref. 6) used a
finite-difference method to solve time-averaged conservation equations along

with a k-e turbulence model for the prediction of turbulent velocity. The

numerical prediction was in good agreement with Sonin's data except for the

region close to the interface where the diffusion process was dominant. The
failure of the numerical solution for the near-interface region, as stated in

reference 6, was probably due to an inappropriate turbulence model or the

inappropriate turbulence boundary conditions applied at the interface. The



effects of flow parameters, such as jet Reynolds number and Prandtl number on
the interface condensation rate in a laminar jet-induced mixing tank was
studied numerically by Lin (ref. 7). The numerical results showed that the
average condensation heat-transfer coefficient increased linearly with the jet
Reynolds number and varied with the llquid Prandtl number to a power of about
0.97 for 0.85 < Pr < 2.65.

Besides the flow parameters, the vapor condensation rate in a mixing tank
is also dependent on the system parameters which affect directly the design of
the mixing device. Lacking an adequate design data base, any overdeslgn of the
mixing device will increase its weight and power consumption. This will lower
the performance efficiency of the mixing device in reducing tank pressure.
This paper presents results of a numerical investigation on the effects of sys-
tem parameters on the interface condensation rate and provides useful informa-
tlon for the design of a mixing device.

Reference 7 showed that for a small jet to tank diameter ratio, most of
the vapor condensation occurs in the central part of the interface so that the
normal-gravity solution (flat interface) may be a good approximation to 1ow-
gravity condition (curved interface). Only laminar flow is considered in the
present investigation. However, it |s expected that the effects of system
parameters on the interface condensation process will be qualitatively the same
for both the lamlnar and the turbulent jets.

Numerical solutlons of the nondimensional continuity, momentum and energy
equations are obtained by a finite-difference method. Calculations cover a
wide range of system parameters such as liquid height to tank dlameter ratio,
tank to jet diameter ratio, liquid inflow to outflow area ratlo, and a param-
eter Nh which characterizes the uniform wall heat-flux. Detailed analyses
are performed and slmplified equations are suggested to predict the effects of
these parameters on the condensation Stanton number which characterizes the
steady-state interface condensation rate.

PROBLEM FORMULATION AND DESCRIPTION

The physical system and the coordinates used to analyze the problem are
shown in figure I. A laminar axlal-jet of diameter d is located at the cen-
ter of the bottom of a cylindrical tank of diameter D. liquid is continuously
withdrawn from the outer portion of the tank bottom to maintain a constant llq-
uid fill level. The tank outflow to jet inflow area ratlo (Aout/Aj) Is varied
from 7.5 to 360 and the tank to jet diameter ratlo (D/d) is varied-from 12.5 to
33.3. Both the central jet and outflow velocities, u_ and Uou t, respec-
tively, are assumed uniform. The effect of vapor superheat is neglected which

implies that Cpv(T v ± Ts)hfg << I. Also, the effect of vapor motion on the
condensation process is assumed to be negligible. The above assumptions effec-
tively decouple the liquid region from the vapor region. Therefore, the con-
densation rate can be determined from the solution of the temperature field in
the liquid region only.

Various fill levels are considered with the liquid helght to tank diameter
ratio (H/D) ranging from 0.25 to 1.25. The liquid-vapor interface is assumed
to be flat (wave free), shear-free and at a constant saturation temperature,

Ts, The axial jet is at a constant subcooled temperature, Tj, and the tank
outflow reglon is assumed to have zero temperature gradient.- Tank walls are



subjected to a unlform heat leak. The dimensionless wall heat-flux parameter,
Nh (Nh E qwDlk(Ts - Ti)), which characterizes the uniform wall heat-flux is
varied from 0 to 4. _ll the associated thermodynamlcsand transport properties
are assumedconstant since only small temperature variation is considered In
the whole flowfield.

The energy and mass balance in the liquld region can be expressed, respec-
tively, as

[ PUoutCpToutdAout - _ pUjCpTjdAj : _ mchfgdAs + _ PUcCpTsdAs + DHqw
(1)

PUoutAout - _ mcdA s : pujAj
(2)

where mc, hfq, CD, Tou t , and qw are the local interracial condensatlon mass
flux, latent _eat-of condensation, speclfic heat at constant pressure, local
outflow temperature, and wall heat flux, respectlvely. The condensation-
induced velocity is obtalned by

mC
uc - p

(3)

By uslng equations (2) and (3), equatlon (I) becomes

qw
oaITout - Tj_ _DH --

Q \ Ts - Tj _ - hfg

_mcdAs = (4)

Tou t - Tj_1 + Oa 1 - Ts _ Tj ]

where the Jet volume flow rate (Q), the Jakob number (Ja), and the average

outflow temperature are defined as Q = ujAj, 3a = Cp(T s - Tj)/hfg, and
Tou t = % ToutdAout/Aou t, respectlvely. The form of equation-(4) _s convenient
to estimate the interfacial condensation mass flux by uslng the measurable

experimental variables. The condensation mass flux at the Interface Is given

by

mchfgAs = _ mchfgdAs

<k aT'_dA
: _/s s

(5)

where mc Is the average condensation mass flux at the interface, and k is
the thermal conductlvlty. Thus, the condensation-lnduced velocity can be rela-

ted to the interfacial temperature gradlent by

K[aTI
(6)U -

c phfg



Equatlons (4) and (5) can be used as the termlnatlon crlterlon for the itera-
tlve calculatlon or as a check of the numerical solutions.

MATHEMATICAL MODELING

The jet-lnduced mixing problem considered in the present study is steady-

state and incompresslble with gravity acting in the vertical negative-x direc-
tion. The dimensionless forms of the governing equations, with buoyancy force

resultlng from the temperature gradient in the liquid neglected, are

au* at*v*
ax---T + r-_ ar* - 0 (7)

aU.2 au*r*v* _ l ra2u • au,_

ax* + r* ar* --- ax* + B Rej[ax,2 + r'Bar * (r* ar*}
(8)

au*v* ar*v .2 a* 1 v* 1 ra2v* a (r* av*X]
--_T- + r' at*'- _r_- B Rej r,---2 + F_jL_;_ ÷_"a_" o_*jj

(9)

au*T* ar*v*T* 1 '[a2T* a aT*%l
ax" + r' ar" -B Rej PrLa-_ + r * ar" (_r* a-_Jj

r "

The nondimensional varlables in the above equations are defined as

x r* r u* u . v* v . p, P - Pcj T* T - Tj

x* - _, " _' " 0-_ " u-_ - puj2 ' - Ts- Tj

(lO)

It Is noted that, for convenience, the gravity term has been subtracted from

the x-momentum equatlon by using the static equilibrium equation"

ax : -pg

The relevant parameters In the governing equations are the jet Reynolds number

(Rej), the Prandtl number (Pr), and tank to jet diameter ratio (B)"

c_ D

Rej. _ ,Pr-_, B-_ <If>

The followlng boundary condltlons are used to solve the elliptic equations
(7) to (lO). At the centerline, the symmetric condltions are used:

au* aT* 0
v* = O. _ = ar* -

Nonsllp conditions are applied to the solid walls"

U* = V* -- 0



The bottom-wall Is assumed to be adiabatic"

The side-wall is subjected to a uniform heat flux"

where the wall heat-flux parameter Nh is defined by

Nh =
qwD

k(T s - Tj)

(12)

The interface Is at saturation temperature TS and is assumed to be wave-
free and shear-free"

H
By* o T* 1 at x* =ax* - ' =

The axial velocity at the interface is the condensation-induced velocity and

is given, from equation (6), by

Ja _ s at x* H
U* * : : --= -Uc - Pr B Re_. D

J

(13)

It should be noted that although buoyancy force is neglected, the velocity and

temperature fields are still coupled through the condensation-induced velocity

uC at the interface.

For the central Jet, uniform veloclty and temperature are assumed"

U* = 1, V* = O, T* = 0

In order to maintain constant liquid level, the volume flow rate of the liquid

withdrawn from the outer part of the tank bottom should be equal to the jet

volume flow rate plus the condensation volume flow rate. With the assumption
of uniform velocity and zero temperature gradient, the boundary conditions at

the llquid-withdrawn plane are given by

Aout Pr Rej

and

aT*
v* = O, _ - O



It is evldent that besides Rej, Pr, and B (: D/d), four additional
parameters assoclated with the boundary conditions are"

H Aout

D' Aj ' Ja, and Nh
(14)

The average condensation heat-transfer coefficient, hc, and condensation
Stanton number, Stc, which describe the interracial heat and mass transports
are defined as

mchfg

hc - (T s - Tj)
(]5)

_C - C
pUjCp

(16)

By using equatlon (4) or (5), the average condensation Stanton number can be
expressed as

or

S-tc =

0.5 fOT'_ r*\8X*/sr*d
0

Rej B Pr
(17)

respectively, where

Y

S-to = Rej B Pr'
(18)

and

y _._

(Pr Rej Tout) _oNh(H)
1 + Ja(l- Tout)

u

Tou t - Tj

8



as

From the above analysis, the condensation Stanton number can be expressed

S--to -- fIRej Pr' D H A°ut )' d' D' Aj ' Ja, Nh
(19)

The effect of Re_ and Pr on S_ c has been studied in reference 7. This
paper describes t e effects of the other system parameters on the interface
condensation process. The calculations are conducted for jet Reynolds number

(Re_) equal to 150, 200, and 300 whlch are in laminar flow range, and for
Pra_dtl number (Pr) equal to 1.25 and 2.1 which represent typical values of
llquid hydrogen and nitrogen, respectively. Also, the parameters D/d, H/D,

Ja, and Nh are varied from 12.5 to 33.3, 0.25 to 1.25, 7.5 to 360,Aout/Aj,
0 to 012, and 0 to 4, respectively.

NUMERICAL METHOD OF SOLUTIONS

The above elliptlc partial d_fferential equatlons are numerlcally solved

by a flnlte-dlfference method. The flnite-difference equations are derived by

integrating the differential equations over an elementary control volume sur-

rounding a grid node appropriate for each dependent variable (ref. 8). A

staggered grid system is used such that the scalar propertles, p and T, are
stored midway between the u and v velocity grid nodes. The bounded skew

hybrid differencing (BSHD) is incorporated for the convective terms (ref. 8)

and the integrated source terms are llnearlzed. Pressures are obtained from a

predictor-corrector procedure of the Pressure Implicit Spllt Operator (PISO)
method (ref. 9) which ylelds the pressure change needed to acqulre velocity

changes to satlsfy mass continuity. The governing flnite-difference equations
are solved Iteratlvely by the ADI method wlth under relaxation untll the solu-

tions are converged.

Calculations are performed wlth a nonuniform grld dlstrlbution with con-

centratlon of the grid nodes in the centerllne, near-wa11, and near-lnterface

regions where the gradients of flow propertles are expected to be large. The

nonunlform grid dlstrlbutlon in axial dlrection is generated by uslng an expo-
nentlal function of Roberts' transformation (ref. 10) with the stretching

parameter equal to 1.02. In the radial dlrectlon, the scheme used by Cebecci
and Smlth (ref. ll) with a constant ratio between two adjacent grid spacing is

used. The 72 by 41 grid nodes which have been shown In reference 7 to give

reasonable grld-lndependent solutions are used for a11 the calculations in the

present study. Calculations are performed on a CRAY-XMP computer located at
NASA Lewis Research Center. The convergent solutions are considered to be

reached when the absolute value of (eqs. (17) - (18))/(eq. (17)) is less than

0.005 and the maximum of absolute residual sums for each dependent variables is

less than lO-6.

RESULTS AND ANALYSIS

Numerical solutions showed that the flowfield near the jet region is

generally independent of the parameters Ja, Pr, Nh, and Aout/A j at least
for their ranges considered in this study. The linear relatlon Between the



potentlal core length to jet diameter ratio (xD/d) and jet Reynolds number
(Rej) obtained in reference 7, xp/d = 0.006? R_j, is confirmed. The present
calculatlons further show that the 11near relat]on holds only when H/d is
greater than somecritical value. As shownin figure 2, larger Rej and
lower D/d tend to reduce the critical value of H/d. This is because that
the larger Rej and d/D carry more jet momentumto resist the disturbance
induced by the existence of free-surface.

The axial jet introduced from the bottom will turn radially outwa[d frQm
the centerline as it approaches the interface. Numerical solutions indicate

* is essentially unaffected bythat the radial velocity at the interface vs
Pr Nh and Aout/Aj. However the v* is a strong function of H/D and D/d
and is slightly affected by aa. Figure 3 gives the distribution of radial
interface velocity (v_) as a function of aa, H/D, and D/d. The V*s is
increasing with aa and decreasing with H/D and D/d. The peak value of v*s
is located closer to the centerline whenthe parameters D/d and Rej are
larger, and Ja and H/D are smaller. However, it is generally located
within the region of r* < O.l. The average value of v* can be described by

-- S

the following equation within ±3 percent of the exact numerical solutions"

_.vs = 0.2 Re - (l + 0.226 Ja) (20)

for H/d _ lO, Ja S 0.2, 150 S Rej S 600, Nh S 4, and 1.25 S Pr S 2.65.

m

The average condensation Stanton number StC as _ function of Aout/A j
is shown in figure 4 for adiabatlc wall condition, Nh O. Calculations also

Include the dlfferent outflow locations for the same Aout/A j. It__is
obvious that under adiabatic (or very low heat leak) conditi6ns, Stc is
essentially Independent of the liquld-wlthdrawn iocatlon and area. However,

additlonal calculations for high heat leak, Nh = 4, indicate that Stc is
greater if the outflow location is closer to the tank wall. This is because

the outflow located closer to the wall enhances the 11qu|d circulation of the

tank and convects more heat from the wall to gain a higher outflow temperature

at the tank bottom. This information will be very useful in the design of a

pumping system for the mixer.

The heat transfer due to condensation is carried away by the radial flow
motion near the interface. Therefore, the interfaclal heat transfer is expec-

ted to be greater for lower liquid fill level since the radial velocity near

the Interface will be greater. The variatlon of the average condensation

Stanton number S'TC with H/D Is shown in figure 5. For an adlabatlc wall,

i.e., Nh = O, StC is a relatively weak function of H/D. However, with an

increase in the wall heat-flux, the average condensation Fate decreases sig-
nificantly as H/D increases. As for example, figure 5 shows that for Nh = 4

and Re_ = 150, the condensation rate at H/D = ].25 Is reduced by more than
60 perc6nt compared to that at H/D = 0.25.

Figure 6 shows the distribution of the Interface temperature gradient for
different values of H/D and D/d. The interface temperature gradient at the

central part of the interface, (ST*/Sx*) s, increases as H/D decreases.

lO



However, (BT*/Bx*) s decreases with a decrease in H/D at the outer part of
the Interface. In contrary to the effect of H/D, the interface temperature
gradient at the central part decreases with a decrease in D/d, but increases
appreciably at the outer part of the interface. The average value of the
interface temperature gradient Is greater for smaller D/d because the larger
jet dlameter introduces more jet flow rate to the tank. Also seen from figure
6, lower H/D and higher D/d result In the condensation being more confined
in the central part of the interface. Thus, the normal-g (flat interface)
solutions maybe applied to the low-g condition if the liquid fill level_ is
low and Jet nozzle diameter Is small enough The effect of D/d on Stc is
given in figure 7. For a given H/D, S-tc/(d/D) _ approaches an__asymptotlc
value. Thus, it can be stated that if D/d is large enough, Stc will be
proport_!ional to (d/D) 2 For Ja << l and Nh << l, a correlation for predic-
ting Stc (withln ±5 percent bound) is given by

_c = 0.977(H_-O'O25pr-O'OJID_-2 (21)

for 0.25 < HID < 1.25, 0.85 < Pr < 2.65, 150 < Rej < 600, and D/d > 20. It
is noted that although Stc Ts Independent of-Jet Reynolds number Rej for
Ja << l and Nh << I, this maynot be true for larger values of Ja and Nh.

From equation (21), it is evident that D/d is a more Important parameter

affectlng the interface condensation than H/D and Pr. If H/D and Pr are

close to one, S--tc - (d/D) 2 may glve a reasonably good prediction of interface
condensation rate. In that case, Stc is nearly a constant determined by the

system geometry and the interface condensation rate can be determined by the

jet volume flow rate. This conluslon also supports the finding in reference 7.

The__Jet subcoollng is characterized by Jakob number (3a). Figure 8 shows

that Stc is llnearly increasing with Ja. For an adiabatic wall (Nh = 0),

the increase of Stc wlth respect to Ja is very sma11. The effect of Ja

on S_ C is enhanced at larger Nh. However, even for hlgh wall heat flux,
Nh , 4, the difference in the value of StC between Ja : 0 and 0.2 is stlll

less than 4 percent. For most common cryogens such as liquid hydrogen, nltro-

gen, and oxygen, Ja is generally less than 0.2 for most practical applica-
tlons. Thus, the effect of 3a can be neglected and the work of reference 7

in which 3a - 0 was__assumed Is also justified. It is noted that the explicit

effect of Ja on StC is dlrectly through the condensation-lnduced velocity
* at the interface. Thus the negllgible effect of Ja simply means that,

U C
* at the interface Is Included in the calculations or not, the

whether uc
effect is negllglble. Numerical solutions show that the maxlmum value of uc,

which is usually located at or near the centerllne, is generally at least two

orders of magnitude lower than the Jet velocity. For instance, (Uc/U_)max

Is about 0.00?7 for Ja - 0.2, Nh - O, Rej = 300, Pr = 1.25, H/D , 1.0, and
D/d = 20.

Heat transfer through the tank walls tends to generate thermal stratifica-

tion and to increase the average temperature of the liquid. Thus, an increase
in the wall heat-flux wlll result in the reduction of condensation rate. Fig-

ure 9 shows the linear relation between the average condensation Stanton number

S'-tC and the heat leak parameter Nh. The distribution of Interface temper-
ature gradient is shown in flgure lO. The interface temperature gradlent

(8T*/Bx*) s is lower everywhere for Nh > 0 (wall heat leak) than that for

II



Nh : 0 (adiabatlc wall). It is noted that if Nh is large enough, say

Nh = 4, a slight vaporization may occur near the tank wall region.

CONCLUSIONS

The effects of system parameters on the interface condensation rate in a
laminar jet-induced mixing tank as shown in figure 1 have been numerically
investigated. The selected jet velocities were low enough such that the free
surface was approximately flat. The effect of vapor superheat was assumed to
be negligible and the interface condensation rate was determined from the
resulting temperature field in the liquid region. Solutions were obtained by
solving the nondimensional form of steady-state conservation equations with a
finite-difference method. Parameters investigated included liquid height to
tank diameter ratio ranging from 0.25 to 1.25, tank to jet diameter ratio
ranging from 12.5 to 33.3, liquid outflow to jet area ratio ranging from 7.5
to 360, and side-wall heat flux parameter varied from 0 to 4, and jet Jakob
number varied from 0 to 0.2. Under the above stated conditions, the following
concluslons can be made:

The condensatlon rate is essentially independent of the outflow to jet

area ratio, Aout/Aj, except for high wall heat flux

The average condensation Stanton number, St c, linearly increases with
Jakob number, Ja, and linearly decreases with the wall heat-flux param-
eter, Nh. The effect of Ja on St c is enhanced when Nh is greater
than zero.

The average condensation Stanton number, Stc, is decreasing with increas-

ing liquid height to tank diameter ratlo, H/D, and tank to jet diameter

ratio, D/d. The parameters D/d and Nh have stronger effects on Stc

than the parameters H/D and Ja.

For Ja << I and Nh << I, S'-tc will be approximately equal to (d/D) 2 if
D/d > 20 and Pr and H/D are close to one. Thus, the interface conden-

sation rate can be determined by the jet volume flow rate.

Lower values of H/D and d/D will yield condensation more confined at

the central part of the interface. Thus, normal-g (flat interface) solu-

tion may be applied to the low-g (curved interface) condition if the

liquid fill level is low and the jet nozzle diameter is relatively small.
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